

PROBLEM 8.1

Determine whether the block shown is in equilibrium and find the magnitude and P direction of the friction force when $\theta=25^{\circ}$ and $P=750 \mathrm{~N}$.

PROBLEM 8.7

The $80-\mathrm{N}$ block is attached to link $A B$ and rests on a moving belt. Knowing that $\mu_{s}=0.25$ and $\mu_{k}=0.20$, determine the magnitude of the horizontal force \mathbf{P} that should be applied to the belt to maintain its motion (a) to the right, (b) to the left.

PROBLEM 8.12

The $20-\mathrm{N}$ block A and the $30-\mathrm{N}$ block B are supported by an incline that is held in the position shown. Knowing that the coefficient of static friction is 0.15 between all surfaces of contact, determine the value of θ for which motion is impending.

PROBLEM 8.13

The coefficients of friction are $\mu_{s}=0.40$ and $\mu_{k}=0.30$ between all surfaces of contact. Determine the smallest force \mathbf{P} required to start the $30-\mathrm{kg}$ block moving if cable $A B(a)$ is attached as shown, (b) is removed.

PROBLEM 8.52

Two 8° wedges of negligible weight are used to move and position a $530-\mathrm{N}$ block. Knowing that the coefficient of static friction is 0.40 at all surfaces of contact, determine the magnitude of the force \mathbf{P} for which motion of the block is impending.

PROBLEM 8.54

Block A supports a pipe column and rests as shown on wedge B. Knowing that the coefficient of static friction at all surfaces of contact is 0.25 and that $\theta=45^{\circ}$, determine the smallest force \mathbf{P} required to raise block A.

PROBLEM 8.77

A lever of negligible weight is loosely fitted onto a $30-\mathrm{mm}$-radius fixed shaft as shown. Knowing that a force \mathbf{P} of magnitude 275 N will just start the lever rotating clockwise, determine (a) the coefficient of static friction between the shaft and the lever, (b) the smallest force \mathbf{P} for which the lever does not start rotating counterclockwise.

Ans. (a) $T_{A}=42.0 \mathrm{~N}, T_{B}=98.0 \mathrm{~N},(b) \mu_{\mathrm{k}}=0.27$

