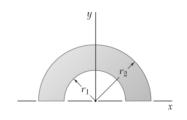

Ans. $\overline{X} = 1.045$ cm., $\overline{Y} = 3.597$ cm.

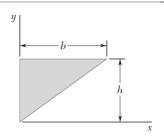
PROBLEM 5.2

Locate the centroid of the plane area shown.

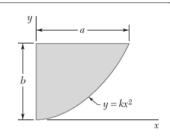

Ans. $\overline{X} = 48.0$ mm., $\overline{Y} = 36.0$ mm.

PROBLEM 5.7

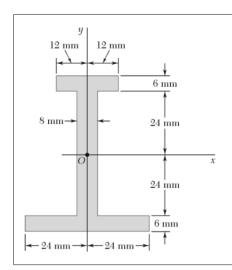
Locate the centroid of the plane area shown.


<u>Ans.</u> $\overline{X} = 0$ mm., $\overline{Y} = 1.151$ cm.

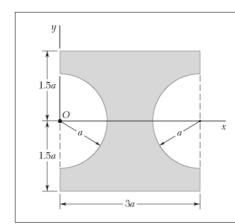
PROBLEM 5.39


Determine by direct integration the centroid of the area shown.

Ans.
$$\overline{X} = 0$$
, $\overline{Y} = \frac{4}{3\pi} \frac{r_2^3 - r_1^3}{r_2^2 - r_1^2}$


Determine by direct integration the moment of inertia of the shaded area with respect to the y axis.

$$\underline{\text{Ans.}}\ I_{y} = \frac{1}{12}b^{3}h$$


Determine by direct integration the moment of inertia of the shaded area with respect to the y axis.

$$\underline{\text{Ans.}}\ I_{y} = \frac{2}{15}a^{3}b$$

Determine the moment of inertia and the radius of gyration of the shaded area with respect to the x axis.

<u>Ans.</u> $I_x = 390 \times 10^3 \text{ mm}^4$, $k_x = 21.9 \text{ mm}$

Determine the moments of inertia of the shaded area shown with respect to the x and y axes when a = 20 mm.

<u>Ans.</u> $I_x = 954.3 \times 10^3 \text{ mm}^4$, $I_y = 463.3 \times 10^3 \text{ mm}^4$